

THE EFFECT OF PHOTOELECTRON LEAKAGE AT THE FACE OF THE

PMT ON SCINTILLATOR EFFICIENCY STUDIES OF COSMIC RAY VETO

Jefferson Lansford

Undergraduate, Physics

University of Virginia

08 May 2011

- 1 -

ABSTRACT

Initial analysis of the Summer 2010 Half Module Data for the Cosmic Ray Veto (CRV) system

indicates that leakage of photoelectrons (PE) at the face of the photo multiplier tubes (PMTs)

may be influencing calculated scintillator efficiencies. This investigation first examines the

evidence for leakage of PE at the face of each PMT and then attempts to ascribe functional

associations to the relationship between leakage and calculated scintillator efficiency. To

examine the evidence for leakage, we plotted histograms of the response for each scintillator

(given a vertical cosmic ray through the trigger scintillators) and ordered the histograms to

reflect fiber layout at the PMT. We demonstrate that the leakage, which is similar for both

PMTs, is on the order of a single photoelectron (SPE) and that it is typically constrained to

horizontally and vertically adjacent fibers on the PMT. We then go on to describe the

relationship between leakage and calculated scintillator efficiency. By increasing the thresholds

of the trigger scintillators, we increase the likelihood that a cosmic ray did indeed travel

vertically through a specific column of the scintillators, thus providing a check to see if leakage

causes calculated single layer efficiency (SLE) to be too low. By increasing the thresholds of the

middle scintillator, we increase the likelihood that the middle scintillator was not above threshold

because of leakage, thus providing a check to see if leakage causes calculated SLE to be too

high. We determine that the former effect is indeed observable but that increasing errors that

arise with increasing trigger thresholds prevent statistically significant results. However, a

theoretical ‘leakless’ SLE of .988 was calculated but again with a less than satisfying error.

- 2 -

TABLE OF CONTENTS

1. Background

1.1. Conservation of Lepton Number

1.1.1. Known Path for Muon Decay

1.1.2. Predicted Path for Muon Decay

1.2. Mu2e Experiment

1.2.1. Overview

1.2.2. Cosmic Ray Veto

2. Half Module

2.1. Schematics

2.1.1. Scintillator and PMT Numbering

2.2. Summer 2010

2.2.1. Data Summary

2.2.2. Trigger Placement

2.2.3. Initial Analysis

3. Data Processing

3.1. Evidence for Leakage

3.1.1. Processing Methodology

3.1.2. Output

3.2. Leakage and Efficiency

3.2.1. Processing Methodology

3.2.2. Output

4. Trends and Conclusions

4.1. Evidence for Leakage

4.1.1. Understanding the Trend

4.1.2. ‘Left’ vs ‘Right’ Side of Apparatus

4.2. Leakage and Efficiency

4.2.1. Understanding the Trend

4.2.2. Statistical Uncertainty

4.3. Recommendations for Future Study

5. References and Appendices

5.1. Works Cited

5.2. Thresholds and SPE Peaks

5.3. Data Processing Algorithms

5.3.1. Evidence for Leakage

5.3.2. Leakage and Efficiency

- 3 -

BACKGROU	D

1.1 Conservation of Lepton 	umber

The six leptons in the Standard Model are the charged electron, muon, tau particle and each of

their neutral ‘associated’ neutrinos. These elementary particle ‘pairs’ are distinct in that they

each have a different quantum number for ‘flavor.’ Conservation of lepton number is one of the

fundamental tenets of the Standard Model. Furthermore, conservation of lepton number

typically includes the stipulation that ‘flavor’ be conserved as well
1
. Roughly, this means that in

the following decays, c+d must be equal to a+b:

otherdcotherba

otherdcotherba

otherdecotherbea ee

+•+•→+•+•

+•+•→+•+•

+•+•→+•+•

ττ

µµ

ντντ

νµνµ

νν

1.1.1 Known Path for Muon Decay

The muon and tau particle are not stable under everyday conditions. Typically, muons undergo

Michel-decay in the presence of a lighter nucleus such that:

),(),(
__

ZAeZA e +++→+ −−
µννµ

This conserves lepton number and flavor because the anti-(electron-neutrino) ‘cancels’ the lepton

number of one for the electron so that each side of the decay has a lepton number of one (both of

‘flavor’ muon). The same is also true for the typical ‘capture’ of a muon by a heavier nucleus

such that
2
:

)1,(),(−+→+− ZAZA µνµ

1.1.2 Predicted Path for Muon Decay

The Standard Model does not strictly disallow lepton flavor violation (i.e. processes that do not

conserve lepton flavor). These processes have in fact been observed in the form of neutrino

oscillations. However, according to the Standard Model, charged-lepton flavor violation (CLFV)

should be dynamically suppressed to a practically immeasurable level due to neutrino

interactions. However, there exist ‘Beyond’ Standard Model theories which are in accord with

observed neutrino masses and which predict that the following rare decays occur at measurable

levels
3
:

e

eee

e

→

→

→

µ
µ

γµ

1
 Hyperphysics. Quantum Physics, Particles, Particle Conservation Laws

2
 “Proposal,” 17

3
 Marciano, 317

- 4 -

1.2 Mu2e Experiment

The Mu2e Experiment attempts to observe CLFV in the form of direct conversion of a muon to

an electron in presence of a nucleus such that
4
:

),(),(ZAeZA +→+ −−µ

Observing this decay would provide support for the ‘Beyond’ Standard Model theories that

predict it while failing to observe the decay with the greater precision of the Mu2e experiment

would place constraints on these theories.

1.2.1 Overview

Currently, the ratio of direct conversion events to muon capture events in the presence of a gold

nucleus is known to be less than 6.1*10
-13

 at the 90% confidence level.
5
 Over a two-year run,

the Mu2e Experiment should be able to either lower that ratio to an order of ~10
-17

 or observe

direct conversion of a muon to an electron at the 90% confidence level.
6

1.2.2 Cosmic Ray Veto

Cosmic rays striking the upper atmosphere produce a cascade of lighter particles in high energy

collisions so that approximately half of cosmic radiation at sea level is in the form of muons.
7

Without passive and active shielding, these muons would create an unwanted background of

electrons at the energy expected for direct muon to electron conversion by scattering electrons

from the target and by in-flight Michel-decay into electrons, thereby destroying the potential

sensitivity of the experiment.
8

This background can be reduced to a non-interfering level with a combination of active and

passive shielding. The passive shielding is to be accomplished by building the experimental

apparatus underground and by encasing the detector in 2.0m of concrete and 0.5m of steel. The

active shield will disregard results that coincide with passing cosmic rays which will be detected

with 99.99 percent efficiency as they pass through a triple layer of scintillating material that

detects charged particles (and thus cosmic ray muons and electrons).
9
 This active shield is called

the cosmic ray veto (CRV) system.

HALF MODULE

2.1 Schematics

To achieve a 99.99% efficiency for CRV, each layer in the triple layer of scintillating material

would need to have an efficiency of at least 99%. In the summer of 2009 and 2010, a model of

the CRV underwent preliminary testing. This model was constructed using 30 scintillators of

dimension 470cm x 10cm x 1cm where these bars were layered and numbered via the diagram

4
 “Proposal,” 5

5
 SI Collaboration, 337

6
 “Proposal,” 20

7
 Hyperphysics. Astrophysics, Cosmic Rays

8
 “Proposal,” 32

9
 “Proposal,” 51

- 5 -

below. Each of the 30 bars is connected via a bundle of 3 fibers to a single channel on one of

two PMTs where each PMT has 16 channels. The bars in the ‘left’ half of the apparatus are

connected to the ‘right’ PMT while the bars in the ‘right’ half of the apparatus are connected to

the ‘left’ PMT, again according to the numbering in the diagram.
10

2.1.1 Scintillator and PMT 	umbering

2.2 Summer 2010

The data taken in the summer of 2010 is analyzed and compared to the results from the 2009 data

in Mu2e-doc-1382.

2.2.1 Data Summary

The files used for analysis in this study are:

100730Trig1SptP0_880V_0822.txt

100720Trig123Rec1T1_2T2_31SptranP1_T3880V_1802.txt

100722Trig123Rec1T1_21_32SptranP2_T3880V_1720.txt

100728Trig123Rec1T1_21_32SptranP3_T3880V_0830.txt

100726Trig123Rec1T1_21_32SptranP4_T3880V_0951.txt

100726Trig123Rec1T1_21_32SptranP5_T3880V_1543.txt

100727Trig123Rec1T1_21_32SptranP6_T3880V_0900.txt

100728Trig123Rec1T1_21_32SptranP7_T3880V_1612.txt

These files were converted to root files which will be referred to as P0-P7, respectively.

Throughout this study, I will use P3 because it is the closest run to the readout end that does not

have any corrupted channels. Both P1 and P2 have the channels for s7 and s17 corrupted.
11

10

 Glenzinski 777, 2
11

 See UVA Mu2e elog for 12APR11, “Major points discussed with Yuri”

- 6 -

2.2.2 Trigger Placement

The P0 run was a calibration run taken with the trigger placed away from the scintillator

apparatus. For the P1-P7 runs, the trigger was placed perpendicularly to the long axes of the

scintillator bars at varying distances from the readout end. P1 was 50cm from the readout end

and each successive P_ run was an additional 50cm from the readout end.
12

Furthermore, for the summer 2010 data, the second trigger was placed below the scintillator

apparatus and a third trigger was also used. This configuration reduced the percentage of ‘hot’

events from about 8% to 0.5%.
13

 Based on the data in runs P1-P7, this trigger was connected to

the channel on the PMT that the diagram above indicates as corresponding to s1. The plot below

is from P3 and is representative of P1-P7.

2.2.3 Initial Analysis

In Mu2e-doc-1382, the single layer efficiency (SLE) for the middle layer of scintillators was

calculated to be 91-94% depending on position from the readout end (for the 2010 data). This

calculation is taken to be performed as follows for each run:

∑ =
=

>
>

=

10

1

]_2&[__

]_2&1&[__

n n

n
thresholdsrespectivenssneventsof�umber

thresholdsrespectivensnssneventsof�umber

εε

ε

12

 Glenzinski 777, 4
13

 Glenzinski 1382, 66

- 7 -

where ‘n’ designates a particular ‘column’ of three scintillators. These efficiencies are raised by

1-2% if the offset of the middle scintillator is taken into effect. This is done with an ‘or’

statement in the numerator to include the possibility that the cosmic ray went through the nearest

neighbors
14

. The numerator would then become:

]_2&)}1(1||1||)1(1{&[__ thresholdsrespectivensnsnsnssneventsof�umber >+−

It was also noted in document 1382 that the histograms for the above threshold events in each

scintillator do not follow Poisson statistics but rather have an excess at what is assumed to be 1

photoelectron (PE) as shown below
15

It was suggested that efficiencies be reinvestigated by raising the thresholds for the denominator

to >1.7PE to remove the 1PE noise peak from the top/bottom scintillators.
16

14

 Glenzinski 1382, 43
15

 Glenzinski 1382, 55
16

 Glenzinski 1382, 61

- 8 -

DATA PROCESSI	G

3.1 Evidence for Leakage

This section will present data that will hopefully clarify the nature of what we mean by ‘leakage’

in this study.

3.1.1 Processing Methodology

To develop the methodology for characterizing leakage at the face of the PMTs, it is first

necessary to examine the fiber schematics of Section 2.1.1 which detail the connections between

the scintillator apparatus and the PMTs. The fibers of two scintillators can have four distinct

relationships at the face of the PMTs: (I) The fibers are horizontally/vertically adjacent on the

same PMT. (II) The fibers are diagonally adjacent on the same PMT. (III) The fibers are not

adjacent but are attached to the same PMT. (IV) The fibers are not attached to the same PMT.

The leakage will first be examined by inspection. This will be done by making histograms for all

the scintillators with the condition that s5, s15, and s25 be above threshold.
17

 The histograms

will be arranged to reflect their layout on the PMTs. This process will be repeated with the

condition that s6, s16, and s26 be above threshold.

The fiber schematics will also be exploited to derive a numerical description of ‘leakage.’ For

each PMT, two dimensional histograms will catalogue the combined above threshold response

(in number of photoelectrons) for all scintillators with a Type I relation to the trigger scintillators

described above. These values are plotted against the average number of photoelectrons in the

triggers. This will be repeated for the combined Type II/III relations and the Type IV relations.

The following programs in C++ (attached as appendices) were written to effect each of the

above:

PMT_chart.C

Leakage_LR.C

17

 Thresholds and SPE peaks discussed in Appendix A

- 9 -

3.1.2 Output

Plots ‘a’ through ‘d’ were constructed with PMT_chart.C

a. ‘Right’ PMT (‘left’ side of apparatus when viewed from the readout end) for s5, s15, s25

above threshold

- 10 -

b. ‘Left’ PMT (‘right’ side of the apparatus when viewed from the readout end) for s5, s15, s25

above threshold

- 11 -

c. ‘Left’ PMT for s6, s16, s26 above threshold

- 12 -

d. ‘Right’ PMT for s6, s16, s26 above threshold

- 13 -

e. Text Output for Leakage_LR.C

PMT 0 corresponds to the right PMT and thus the left half of the apparatus

-The triggers for PMT 0 are s5, s15 and s25

-The Type I channels are s4, s11, s14 and s21

-The Type II/III channels are s2, s3, s12, s13, s22, s23 and s24

-The Type IV channels are the channels attaching to the other PMT, excluding s10 because this

is the equivalent of excluding s1 on PMT1 (which is used for a trigger)

PMT 1 corresponds to the left PMT and thus the right half of the apparatus

-The triggers for PMT 1 are s6, s16 and s26

-The Type I channels are s7, s17, s20 and s30

-The Type II/III channels are s8, s9, s18, s19, s27, s28 and s29

-The Type IV channels are the channels attaching to the other PMT, excluding s1 (which is used

for a trigger)

For all calculations, ‘exp prob’ stands for ‘experimental probability’ and is calculated such that:

thresholdabovetriggersthreeallwithevents

TypeXofscin

thresholdtriggersgiventhresholdaboveTypeXofscin

P

events

______#

__#

)_(_____#∑ >

=

22733 events in P3 with 22513 events not 'hot' (a ‘hot’ event is defined
to be any event with > 15 scintillators above threshold and ‘hot’
events are excluded from the results)

0.0903034 percent of events for PMT 0 with all three trigger scintillators
above threshold (2033 number of such events)

0.0807919 TypeI leakage exp prob for PMT 0
657 number of such events (4 scint per 'event')

0.0210105 TypeII/III leakage exp prob for PMT 0
299 number of such events (7 scint per 'event')

0.0169349 TypeIV leakage exp prob for PMT 0
482 number of such events (14 scint per 'event')

0.0720028 percent of events for PMT 1 with all three trigger scintillators
above threshold (1621 number of such events)

0.0692474 TypeI leakage exp prob for PMT 1
449 number of such events (4 possible scint per 'event')

0.0240592 TypeII/III leakage exp prob for PMT 1
273 number of such events (7 possible scint per 'event')

0.0220323 TypeIV leakage exp prob for PMT 1
500 number of such events (14 possible scint per 'event')

- 14 -

f. Graphical Output for Leakage_LR.C

The first pair of two-dimensional histograms below plot the Type I ‘Leakage’ events (in nPE) for

all scintillators with a Type I relation to at least one of the trigger scintillators. The second two

histograms do so for the combined Type II/III events and the third two histograms do so for the

Type IV events. The x-axis is an average number of PE for the three trigger scintillators and the

scaling for nPE was done by dividing the measured ADC by the mean of the SPE peak. NB:

Because there are a different number of scintillators for each ‘TypeX,’ the number of ‘Entries’

must be divided by the number of scintillators for that particular ‘TypeX’ to compare probability

of leakage (detailed in e.).

- 15 -

3.2 Leakage and Efficiency

This section will present data used to make conclusions about the effect of leakage on calculated

single layer efficiency (SLE).

3.2.1 Processing Methodology

To develop the methodology for characterizing the effect of leakage on SLE, it is necessary to

recognize the role that thresholds play. In the original calculation, the threshold was taken to be:

SPEpedestalpedestal ADColdthreshold µσµ ×≅+×+=
3

1105_

However, this threshold has two negative effects. First, if there is leakage of order 1PE, then the

denominator events may not actually represent events where a cosmic ray passed vertically

through the column of scintillators. Secondly, this threshold does not take into account enough

of the ‘heavy’ tail of the pedestal. We therefore take the thresholds to be the minimum between

the pedestal and the SPE peak
18

. We imaginatively call this new threshold:

SPEnewthreshold µ
2

1_ ≅

The ‘above threshold response’ in both trigger scintillators (sn and s2n) ensures via geometry

that the cosmic ray has passed through the middle scintillator (s1n) whose efficiency we are

calculating.
19

 Threshold_new better ensures that pedestal noise does not significantly affect the

calculated efficiency.

18

 Modeled SPE peaks are displayed in Appendix Section 5.2. Note that the left edge of the fitted Gaussian was

chosen to correspond with the threshold_new for each scintillator
19

 Throughout this study we will use the nearest neighbor requirement given in Section 2.2.3. This is acceptable

because we are calculating single layer efficiency. We therefore will be calculating the efficiencies for different

portions of the layer rather than for specific scintillators in the layer. When we discuss an effect for ‘s1n,’ it would

be more precise to use the phrase ‘three scintillator portion of the middle layer centered at s1n’

- 16 -

Because this threshold is below the mean for the single photoelectron (SPE) peak and because

most ‘leakage’ is of order 1PE (see Section 3.1.2.f.), we would expect noise due to leakage to

affect the calculated efficiency. To investigate this effect we will vary the thresholds used in

calculating the SLE as functions of the parameters for the SPE peak
20

.

We will refer to the thresholds used for the trigger scintillators (sn and s2n) as:

threshold_a

We will refer to the thresholds for the middle scintillators (s1n, s1(n-1) and s1(n+1)) as:

threshold_b

First, we will vary threshold_a such that:

SPEaathreshold µ×=_ with a = {0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.25,2.5,2.75,3.0,3.25}

newthresholdbthreshold __ =

We will vary these thresholds such that:

SPESPE

SPESPE

bbthreshold

aathreshold

σµ

σµ

×+=

×+=

_

_

First, we take ‘a’ and ‘b’ to be the following to get an overview of the trend:

n 1 2 3 4 5 6 7 8 9 10 11 12

a -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

b -0.75 -0.50 -0.25 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Additionally, we will vary threshold_a as above and calculate SLE using:

threshold_b = threshold_new

This will be done using

Then, for reasons explained in Section 3.2.2, we will take ‘a’ and ‘b’ to be:

n 1 2 3 4 5 6 7 8

a -0.842 -0.524 -0.253 0.0 0.253 0.524 0.842 1.282

b -0.842 -0.524 -0.253 0.0 0.253 0.524 0.842 1.282

The following programs in C++ (attached as appendices) were written to effect each of the

above:

SLE_threshold_a.C SLE_threshold_ab.C Surface.C

20

 Note that the varied thresholds for each scintillator will always be greater than or equal to threshold_new

- 17 -

3.2.2 Output

a. Output from SLE_threshold_a.C

The ‘row order’ for the first data block is repeated throughout

 s12 s13 s14 s15 s16 s17 s18 s19

 0.9772 0.9936 0.9620 0.9086 0.9872 0.9894 0.9766 0.9693 Efficiency
 2895 2029 2418 1882 1646 1512 1624 1171 Denominator
 0.0258 0.0312 0.0279 0.0304 0.0345 0.0361 0.0345 0.0404 Poisson Error
 0.0028 0.0018 0.0039 0.0066 0.0028 0.0026 0.0038 0.0050 Binomial Error

 0.9775 0.9941 0.9641 0.9153 0.9873 0.9900 0.9768 0.9681
 2715 1858 2286 1452 1414 1297 1511 1097
 0.0267 0.0327 0.0288 0.0347 0.0372 0.0390 0.0357 0.0417
 0.0028 0.0018 0.0039 0.0073 0.0030 0.0028 0.0039 0.0053

 0.9774 0.9936 0.9641 0.9133 0.9888 0.9914 0.9790 0.9693
 2479 1571 2062 1176 1163 1047 1380 1009
 0.0279 0.0355 0.0303 0.0385 0.0411 0.0434 0.0375 0.0435
 0.0030 0.0020 0.0041 0.0082 0.0031 0.0029 0.0039 0.0054

 0.9793 0.9925 0.9675 0.9119 0.9891 0.9913 0.9802 0.9729
 2267 1193 1848 897 921 804 1214 887
 0.0292 0.0407 0.0321 0.0441 0.0462 0.0495 0.0400 0.0465
 0.0030 0.0025 0.0041 0.0095 0.0034 0.0033 0.0040 0.0054

 0.9792 0.9913 0.9703 0.9130 0.9905 0.9936 0.9794 0.9719
 2015 917 1686 701 738 621 1068 784
 0.0310 0.0464 0.0337 0.0499 0.0517 0.0565 0.0426 0.0494
 0.0032 0.0031 0.0041 0.0106 0.0036 0.0032 0.0043 0.0059

 0.9820 0.9904 0.9691 0.9157 0.9892 0.9937 0.9784 0.9710
 1726 729 1489 498 558 474 926 689
 0.0336 0.0520 0.0358 0.0593 0.0594 0.0646 0.0457 0.0527
 0.0032 0.0036 0.0045 0.0125 0.0044 0.0036 0.0048 0.0064

 0.9808 0.9929 0.9700 0.9290 0.9909 0.9941 0.9798 0.9726
 1462 567 1300 352 439 341 792 620
 0.0365 0.0591 0.0383 0.0714 0.0670 0.0762 0.0495 0.0556
 0.0036 0.0035 0.0047 0.0137 0.0045 0.0041 0.0050 0.0066

 0.9813 0.9954 0.9745 0.9447 0.9914 0.9962 0.9789 0.9699
 1233 433 1100 253 348 261 662 531
 0.0397 0.0677 0.0418 0.0852 0.0753 0.0873 0.0541 0.0600
 0.0039 0.0033 0.0047 0.0144 0.0050 0.0038 0.0056 0.0074

 0.9797 1.0000 0.9747 0.9494 0.9887 1.0000 0.9782 0.9712
 1033 327 947 178 265 197 550 451
 0.0433 0.0782 0.0451 0.1020 0.0861 0.1008 0.0593 0.0652
 0.0044 0.0000 0.0051 0.0164 0.0065 0.0000 0.0062 0.0079

 0.9828 1.0000 0.9740 0.9752 0.9898 1.0000 0.9824 0.9792
 815 244 807 121 197 160 454 385
 0.0489 0.0905 0.0488 0.1262 0.1000 0.1118 0.0655 0.0710
 0.0046 0.0000 0.0056 0.0141 0.0071 0.0000 0.0062 0.0073

 0.9814 1.0000 0.9729 0.9762 0.9874 1.0000 0.9790 0.9785
 646 183 663 84 159 116 381 325
 0.0549 0.1045 0.0538 0.1515 0.1111 0.1313 0.0713 0.0772
 0.0053 0.0000 0.0063 0.0166 0.0088 0.0000 0.0073 0.0081

 0.9828 1.0000 0.9801 0.9825 1.0000 1.0000 0.9834 0.9752
 524 134 554 57 111 86 301 282
 0.0610 0.1222 0.0592 0.1849 0.1342 0.1525 0.0805 0.0826
 0.0057 0.0000 0.0059 0.0174 0.0000 0.0000 0.0074 0.0093

- 18 -

b. Example text output for SLE_threshold.C

A data block was generated for each middle scintillator and then those values were inserted into

the program ‘Surface.C’

The top row contains the number of trigger events for each value of threshold_a (increasing)

Threshold_a increases down the columns

Threshold_b increases across the rows

For s12:

2786 2629 2445 2311 2172 1991 1798 1627 1462 1302 1159 1014

 0.9620, 0.9526, 0.9419, 0.9286, 0.9139, 0.9009, 0.8848, 0.8693, 0.8579, 0.8388, 0.8234, 0.8087,
 0.9623, 0.9536, 0.9429, 0.9296, 0.9156, 0.9030, 0.8859, 0.8703, 0.8585, 0.8406, 0.8262, 0.8113,
 0.9616, 0.9538, 0.9431, 0.9301, 0.9170, 0.9043, 0.8871, 0.8716, 0.8593, 0.8409, 0.8258, 0.8110,
 0.9641, 0.9563, 0.9455, 0.9325, 0.9191, 0.9061, 0.8884, 0.8728, 0.8602, 0.8412, 0.8265, 0.8118,
 0.9655, 0.9581, 0.9466, 0.9342, 0.9222, 0.9093, 0.8909, 0.8762, 0.8633, 0.8439, 0.8283, 0.8131,
 0.9684, 0.9608, 0.9493, 0.9377, 0.9262, 0.9126, 0.8940, 0.8800, 0.8669, 0.8483, 0.8322, 0.8167,
 0.9683, 0.9600, 0.9494, 0.9372, 0.9260, 0.9132, 0.8943, 0.8810, 0.8693, 0.8498, 0.8331, 0.8176,
 0.9668, 0.9582, 0.9471, 0.9348, 0.9244, 0.9121, 0.8949, 0.8808, 0.8697, 0.8494, 0.8322, 0.8187,
 0.9692, 0.9610, 0.9508, 0.9384, 0.9282, 0.9159, 0.8981, 0.8844, 0.8735, 0.8543, 0.8372, 0.8235,
 0.9693, 0.9601, 0.9493, 0.9363, 0.9270, 0.9140, 0.8986, 0.8856, 0.8740, 0.8541, 0.8379, 0.8257,
 0.9681, 0.9586, 0.9474, 0.9336, 0.9232, 0.9120, 0.8965, 0.8818, 0.8697, 0.8499, 0.8352, 0.8240,
 0.9704, 0.9625, 0.9527, 0.9389, 0.9300, 0.9201, 0.9063, 0.8974, 0.8856, 0.8659, 0.8511, 0.8422,

- 19 -

c. Graphical Output for SLE_thresholds_ab.C for first chart of threshold values

- 20 -

d. Graphical Output for SLE_thresholds_ab.C for second chart of threshold values

- 21 -

TRE	DS A	D CO	CLUSIO	S

4.1 Evidence for Leakage

4.1.1 Understanding the Trend

Focusing on the PMT layout diagrams of Section 3.1.2 a-d, we see that neighboring channels on

the PMT (those with a ‘TypeI’ relation) demonstrate pronounced light sharing. Other channels

on the same PMT demonstrate minimal light sharing that is greater than, but of the same

magnitude as, the ‘above threshold response’ on the other PMT. This opposite PMT

correspondence cannot physically be due to ‘leakage’ at the face of the PMT. From the

histograms and data of Section 3.1.2 e-f, we know that we should expect ‘leakage’ on the order

of 1PE in each channel with a TypeI relation to a scintillator with a through-going cosmic ray

with a probability of ~7-8%. Interestingly, for TypeII/III relations and especially Type IV

relations, the order of magnitude for ‘leakage’ is less ‘focused’ around 1PE and is skewed high.

This skewing is probably a factor of viewing all of the scintillators for a given type on the same

histogram. Because we are viewing seven scintillators for TypeII/III and 14 scintillators for

TypeIV, we are essentially magnifying pedestal noise (or noise from elsewhere) for these

channels.

4.1.2 ‘Left’ vs ‘Right’ side of Apparatus

The left and right side of the apparatus, corresponding to the right and left PMTs (respectively),

demonstrate similar trends, intensities and probabilities for ‘leakage.’ Neither PMT dominates.

For example, from Section 3.1.2 e, we see that while the right PMT has a higher expectation for

TypeI leakage by ~15%, the opposite is true for TypeII/III and Type IV relations.

4.2 Leakage and Efficiency

4.2.1 Understanding the Trend

There are two potential effects that ‘Leakage’ at the face of the PMT could have when

calculating SLE. If the ‘above threshold response’ in the trigger scintillators is due to leakage

rather than a through-going cosmic ray, the denominator will have too many events and the

efficiency will thus be biased low. If the ‘above threshold response’ in the middle scintillators is

due to leakage rather than a through-going cosmic ray, the numerator will be too large and thus

the efficiency will be biased high.

We first increase threshold_a in order to increase the purity of the events in the denominator.

Increasing this threshold increases purity because the probability of having an above threshold

response due to pedestal noise or ‘leakage’ decreases as we increase nPE. This is only

compounded by the fact that we have two triggers. Also, because cosmic ray muons are a

‘minimum ionizing particle,’ the nPE excited by the through-going cosmic ray depends only on

distance travelled through the scintillating material.
21

 In other words, the mean for what should

be a Poisson distribution of above threshold response in the middle scintillators should not

change as we adjust the trigger thresholds. Therefore, increasing trigger thresholds should

increase purity without altering other factors. However, the price of increasing purity is

21

 Amsler 27.5

- 22 -

decreasing the number of events that meet the condition. This thereby increases the statistical

error and such increases in error can effectively nullify any gains in calculated efficiency. The

effect is plotted below and the different methods of calculating these errors are discussed in

Section 4.2.2. The data below
22

 represents (SLE – ‘1σ’ of the associated error) averaged over

s12-19 and the x-axis is the change in ‘a’ for:

SPEaathreshold µ×=_

 Effect of Uncertainty on Efficiency Calculation

So while the surface plots in Section 3.2.2 demonstrate that increasing the trigger threshold

yields an increase in efficiency, the increase is counterproductive (at least using Poisson errors)

as the uncertainty in the efficiency increases faster than the efficiency.

Thus the introduction of the novel scale used for both thresholds
23

 in Section 3.2.2 d: By using

these specific values for ‘a’ and ‘b,’ we increase the thresholds in such a way that the area under

the SPE peak increases linearly as we increase the thresholds. This condition is secured by using

the cumulative distribution function (cdf) for a Gaussian
24

 where:

∫ −=

+=

x
t dtexerf

zerfcdf

0

22
)(

2

1
)2/(

2

1

π

The following were solved numerically using the online graphing program ‘Wolfram Alpha’

cdf(z) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8

z -0.842 -0.524 -0.253 0.0 0.253 0.524 0.842 1.282

22

 Output from Efficiency_a.C manipulated with Excel
23

 And of the programs that use these thresholds: Efficiciency_ab.C and Surface.C
24

 Wolfram

- 23 -

Recall that the definition of the z standard variable is:

σ
µ−

≡
x

z which rearranged is: bathresholdzx /_=×+= σµ

If the effect of ‘leakage’ on efficiency is linear and if ‘leakage’ can be accurately modeled by a

Gaussian, then changing the thresholds in the manner described above will change the total

fraction of leakage at a constant rate which should then affect efficiency linearly. This is done in

Section 3.2.2 d for each middle scintillator. This is appealing because it allows us to make

predictions for the effect of leakage on SLE for large values of sigma using data points in a

narrow range.

We see that as we increase threshold_a in this manner, we get a visually ‘nice’ linear increase in

efficiency. However, as we increase threshold_b, we at first observe what appears to be a

negative linear response in calculated SLE. However, as threshold_b approaches 1.0, the

decrease in efficiency increases more rapidly. This is at least partly accounted for by the

increasing number of actual cosmic ray events that will not be counted.
25

By averaging the efficiencies for the middle scintillators, inverting the scaling for threshold_a
26

and by only considering z = 0.2 to z = 0.6 for threshold_b, we can develop a linear model for the

effect of leakage on SLE. Furthermore, the constant in this particular model corresponds to a

theoretical SLE with zero leakage.

Parameters drawn from
averaged efficiencies

0.988207 w/ error 0.5517
is the constant and
THEORETICAL SLE

0.0130706 w/ error 0.6692
is the change in
efficiency per fraction
SPE of the trigger
scintillators

-0.103619 w/ error 1.084
is the change in
efficiency per fraction
SPE of the middle
scintillators

25

 Recall that even if the triggers are well above threshold, the middle scintillators should remain Poisson

distributed so that there will be a portion of what had been ‘above threshold response’ below the new cut
26

 threshold_a � -1.0*(1.0-threshold_a)

- 24 -

4.2.2 Statistical Uncertainty

There are two common methods for calculating the statistical uncertainty for efficiency. The

first uses the formula for the propagation of errors and assumes the characteristics of a Poisson

distribution and the second considers the process of ‘applying thresholds when determining

efficiency’ to be a binomial process. The Binomial method is best suited for calculating the

errors associated with efficiencies that are neither near 0.0 nor 1.0 and since these efficiencies

are very near to 1.0. Therefore, where not otherwise specified, we have used the larger Poisson

uncertainties in the discussion of data trends.
27

Poisson:

�k�

k

�

�

k

k 11
22

+=

+

=
δδ

εδε

Binomial:

 −=−==
�

k
k

�
�

��

k 1
1

)1(
1

εε
σ

δε

4.3 Recommendations for Future Study

Much of the analysis in this note (and the analysis in the several others that I have referenced)

relies on the fact that the excess seen above what should be a Poisson distribution for each

scintillator is taken to be the single photoelectron peak. The PMTs could be tested and calibrated

with a known intensity light source to verify this assumption and to provide confidence to these

results and others. It seems possible that as an alternative to the SPE, the excess is in fact the

direct result of ‘leakage.’ It is plausible to imagine adding the characteristic shapes for TypeI

leakage to Poisson distributions to achieve the shape of the histograms for each scintillator. If

the excess is indeed due specifically to leakage, it could still be of order 1PE, but it would not

have to be so a priori.

27

 Paterno, 3.

- 25 -

REFERE	CES A	D APPE	DICES

5.1 Works Cited

Amsler et al.. “Passage of Particles through Matter.” PL B667, 1 (2008) and 2009 partial update

for the 2010 edition (http://pdg.lbl.gov).

“CDF for Normal Distribution.” Wolfram Alpha. 8 May 2011.

 <http://www.wolframalpha.com/input/?i=cdf+for+normal+distribution>

Glenzinski et al. “Results from the CRV Prototype at Fermilab using Summer 2009 Data.”

 Mu2e-doc-777. Fermilab: The Mu2e Collaboration, 2010.

Glenzinski et al. “Results from the CRV Prototype at Fermilab using Summer 2010 Data.”

 Mu2e-doc-1382. Fermilab: The Mu2e Collaboration, 2011.

Marciano, Willaim J., Toshironori Mori, and J. Michael Roney. “Charged Lepton Flavor

 Violation Experiments.” The Annual Review of �uclear and Particle Science. 58 (2008):

 315-341.

Hyperphysics. Georgia State University. 8 May 2011.

 < http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html>.

Paterno, Marc. “Calculating Efficiencies and Their Uncertainties.” FNAL, 2003.

“Proposal to Search for µ
-
 N → e

-
N with a Single Event Sensitivity Below 10

-16
.” Fermilab: The

 Mu2e Collaboration, 2008.

S. I. Collaboration, Eur. Phys. J. C 47, 337 (2006).

- 26 -

6.2 SPE Peaks

- 27 -

- 28 -

5.3 Data Processing Algorithms

5.3.1 Evidence for Leakage

PMT_chart.C

{
 //Set the scintillators that you desire to test against
 //(i.e. require this scintillator to be above threshold and then see occupancy of others but in
PMT schematic order
 int test1 = 5;
 int test2 = 15;
 int test3 = 25;

 //int test1 = 6;
 //int test2 = 16;
 //int test3 = 26

 gROOT->ForceStyle();
 gROOT->SetStyle("Plain");
 gStyle->SetPalette(1);

 //Determined by inspection of the minimum for P3
 float thresholds[32] = {0.0, 0.0, 70.0, 70.0, 70.0, 70.0, 90.0, 90.0, 100.0, 100.0, 100.0,
 80.0, 90.0, 80.0, 80.0, 90.0, 80.0, 70.0, 80.0, 80.0, 50.0,
 40.0, 40.0, 60.0, 60.0, 30.0, 80.0, 40.0, 50.0, 90.0, 80.0, 0.0};

 //SPE data from SPE_P3.C
 float SPE_mean[32] = {0.0, 535.54, 164.95, 164.60, 156.23, 158.08, 242.23, 173.04, 220.08,
227.65, 189.09,
 150.40, 178.75, 146.53, 166.79, 165.97, 194.37, 145.65, 208.20, 176.26,
129.30,
 125.46, 116.04, 137.64, 164.51, 83.40, 159.28, 113.11, 132.74, 185.54,
178.19, 0.0};

 float SPE_sigma[32] = {0.0, 147.01, 64.25, 53.30, 56.86, 66.92, 100.89, 60.87, 76.10, 84.19,
85.30,
 58.49, 66.30, 49.03, 59.69, 57.57, 77.03, 57.17, 102.89, 94.51, 60.08,
 53.61, 51.55, 51.64, 61.61, 45.14, 61.86, 61.10, 56.97, 86.76, 83.53,
0.0};

 //loop over the file
 for (int ifile=3; ifile<=3; ifile++) {

 //Get the file (in quotes with '.root')
 string infile = Form("P%d.root",ifile);
 TFile *_file0 = TFile::Open(infile.c_str());

 //Get the tree and the leaves
 tv__tree = (TTree *) gROOT->FindObject("ntuple");
 TLeaf *l_s[32];
 l_s[0] = tv__tree->FindLeaf("bottomtrig");
 l_s[31] = tv__tree->FindLeaf("toptrig");
 for (int ileaf = 1; ileaf <= 30; ileaf++) {
 string s_leaf = Form("s%d",ileaf);
 l_s[ileaf] = tv__tree->FindLeaf(s_leaf.c_str());
 }

 //Get the number of events
 int nevent = int(tv__tree->GetEntries());
 cout<<nevent<<endl<<endl;

 // hot[event#]==1 iff the event is hot (i.e. greater than than 50percent of scint. above
threshold)
 int hot[nevent];
 int lit=0;
 int hot_total=0;

- 29 -

 for (int iloop = 0; iloop < nevent; iloop++) {
 tv__tree->GetEntry(iloop);

 lit = 0;
 for (int ileaf=1; ileaf<=30; ileaf++) {
 if (l_s[ileaf]->GetValue() > thresholds[ileaf]) {
 lit++;
 }
 }

 if (lit>15) {
 hot_total++;
 hot[iloop]=1;
 }
 }
 cout<<nevent<<endl;
 cout<<hot_total<<endl;
 float percent_hot = float(hot_total)/float(nevent);
 cout<<percent_hot<<endl;
 cout<<(nevent - hot_total)<<endl;

 //Book histograms
 TH1F *hist_array[31];
 int bins = 150;
 for (int ihist=1; ihist<=30; ihist++) {
 string hist_ADC = Form("P3_s%dADC",ihist);
 string nameADC = Form("s%d given s%d, s%d, and s%d 'lit'",ihist,test1,test2,test3);
 hist_array[ihist] = new TH1F(hist_ADC.c_str(),nameADC.c_str(),bins,0.0,1500.0);
 }

 //Loop over the events
 for (int ievent=0; ievent<nevent; ievent++) {

 //Exclude hot events
 if (hot[ievent] != 1) {

 //Get entries for each event
 tv__tree->GetEntry(ievent);

 for (int ihist=1; ihist<=30; ihist++){

 float cond1 = float(l_s[test1]->GetValue());
 float cond2 = float(l_s[test2]->GetValue());
 float cond3 = float(l_s[test3]->GetValue());

 if((cond1>thresholds[test1]) && (cond2>thresholds[test2]) && (cond3>thresholds[test3])
) {

 float x = float(l_s[ihist]->GetValue());
 hist_array[ihist].Fill(x);
 }
 }
 }
 }

 //Print histograms
 TCanvas *c_1 = new TCanvas("c_1",infile.c_str(),0,0,1600,1600);
 c_1->Divide(4,4);

 //Left PMT
 /*
 for (int ipad=2; ipad<=16; ipad++) {

 c_1->cd(ipad);

 if (ipad==2) hist_array[6]->Draw();
 if (ipad==3) hist_array[7]->Draw();
 if (ipad==4) hist_array[8]->Draw();
 if (ipad==5) hist_array[9]->Draw();

- 30 -

 if (ipad==6) hist_array[10]->Draw();
 if (ipad==7) hist_array[16]->Draw();
 if (ipad==8) hist_array[17]->Draw();
 if (ipad==9) hist_array[18]->Draw();
 if (ipad==10) hist_array[19]->Draw();
 if (ipad==11) hist_array[20]->Draw();
 if (ipad==12) hist_array[26]->Draw();
 if (ipad==13) hist_array[27]->Draw();
 if (ipad==14) hist_array[28]->Draw();
 if (ipad==15) hist_array[29]->Draw();
 if (ipad==16) hist_array[30]->Draw();

 gPad->SetLogy();
 }
 */

 //Right PMT
 for (int ipad=1; ipad<=16; ipad++) {

 c_1->cd(ipad);

 if (ipad==1) hist_array[3]->Draw();
 if (ipad==2) hist_array[14]->Draw();
 if (ipad==3) hist_array[25]->Draw();
 if (ipad==4) hist_array[21]->Draw();
 if (ipad==5) hist_array[4]->Draw();
 if (ipad==6) hist_array[15]->Draw();
 if (ipad==7) hist_array[11]->Draw();
 if (ipad==8) hist_array[22]->Draw();
 if (ipad==9) hist_array[5]->Draw();
 if (ipad==10) hist_array[1]->Draw();
 if (ipad==11) hist_array[12]->Draw();
 if (ipad==12) hist_array[23]->Draw();
 //if (ipad==13) hist_array[27]->Draw();
 if (ipad==14) hist_array[2]->Draw();
 if (ipad==15) hist_array[13]->Draw();
 if (ipad==16) hist_array[24]->Draw();

 if (ipad != 13) gPad->SetLogy();
 }
 c_1.Print("PMT_right.gif");
 }
}

Leakage_LR.C

{
 //Input:
 // Program Runs P3
 // 2 halves: Left and Right PMT

 //Program:
 // Catalogs above threshold response given s5, s15, s25 or s6, s16, s26
 // Correlations using 2D histograms

 //Output:
 // Avg leakage in
 // plots of 2D histograms with linear fit for left and right PMT

 gROOT->ForceStyle();
 gROOT->SetStyle("Plain");
 gStyle->SetPalette(1);

 //Backup to file
 streambuf *output_buf;
 ofstream output_stream;
 output_stream.open("Leakage_LR.txt");
 output_buf = output_stream.rdbuf();

- 31 -

 cout.rdbuf(output_buf);

 //Determined by inspection of the minimum for P3
 float thresholds[32] = {0.0, 0.0, 70.0, 70.0, 70.0, 70.0, 90.0, 90.0, 100.0, 100.0, 100.0,
 80.0, 90.0, 80.0, 80.0, 90.0, 80.0, 70.0, 80.0, 80.0, 50.0,
 40.0, 40.0, 60.0, 60.0, 30.0, 80.0, 40.0, 50.0, 90.0, 80.0, 0.0};

 //SPE data from SPE_P3.C
 float SPE_mean[32]={0.0,535.54,164.95,164.60,156.23,158.08,242.23,173.04,220.08,227.65,189.09,
 150.40,178.75,146.53,166.79,165.97,194.37,145.65,208.20,176.26,129.30,
 125.46,116.04,137.64,164.51,83.40,159.28,113.11,132.74,185.54,178.19,0.0};

float SPE_sigma[32]={0.0,147.01,64.25,53.30,56.86,66.92,100.89,60.87,76.10,84.19,85.30,
 58.49,66.30,49.03,59.69,57.57,77.03,57.17,102.89,94.51,60.08,
 53.61,51.55,51.64,61.61,45.14,61.86,61.10,56.97,86.76,83.53,0.0};

 // Loop over the file
 for (int ifile=3; ifile<=3; ifile++) {

 //Get the file (in quotes with '.root')
 string infile = Form("P%d.root",ifile);
 TFile *_file0 = TFile::Open(infile.c_str());

 //Get the tree and the leaves
 tv__tree = (TTree *) gROOT->FindObject("ntuple");
 TLeaf *l_s[32];
 l_s[0] = tv__tree->FindLeaf("bottomtrig");
 l_s[31] = tv__tree->FindLeaf("toptrig");
 for (int ileaf = 1; ileaf <= 30; ileaf++) {
 string s_leaf = Form("s%d",ileaf);
 l_s[ileaf] = tv__tree->FindLeaf(s_leaf.c_str());
 }

 //Get the number of events
 int nevent = int(tv__tree->GetEntries());
 cout<<nevent<<" events in P"<<ifile<<endl<<endl;

 // hot[event#]==1 iff the event is hot (i.e. greater than than 50percent of scint. above
threshold)
 // only okay because nevent for P1 is greatest...Why can't we redim with each file?
 int hot[nevent];
 int lit=0;
 int hot_total=0;

 for (int iloop = 0; iloop < nevent; iloop++) {
 tv__tree->GetEntry(iloop);

 lit = 0;
 for (int ileaf=1; ileaf<=30; ileaf++) {
 if (l_s[ileaf]->GetValue() > thresholds[ileaf]) {
 lit++;
 }
 }

 if (lit>15) {
 hot_total++;
 hot[iloop]=1;
 }
 }

 cout<<(nevent - hot_total)<<" events not 'hot'"<<endl<<endl;
 nevent = nevent - hot_total;

 //Book histograms
 TH2F *hist_array[2];
 int bins = 20;
 string hist_right = Form("P3_right_PMT");
 string hist_left = Form("P3_left_PMT");
 string name_right = Form("Type I events s5,15,25");

- 32 -

 string name_left = Form("Type I events s6,16,26");
 hist_array[0] = new TH2F(hist_right.c_str(),name_right.c_str(),bins,0.0,20.0,bins,0.0,5.0);
 hist_array[1] = new TH2F(hist_left.c_str(),name_left.c_str(),bins,0.0,20.0,bins,0.0,5.0);
 for (int ihist=0; ihist<=1; ihist++) {
 hist_array[ihist]->GetXaxis()->SetTitle("AVG nPE for Triggers");
 hist_array[ihist]->GetXaxis()->SetLabelSize(.03);
 hist_array[ihist]->GetYaxis()->SetTitle("nPE Type I 'Leakage'");
 hist_array[ihist]->GetYaxis()->SetLabelSize(.03);
 }

 //Set cells of interest
 int trig[2][3] = {5,15,25,
 6,16,26};
 int trig_n[2] = {0,0};

 //s1 and s10 left out
 int typeI[2][4] = {4,11,14,21,
 7,17,20,30};
 int typeI_n[2] = {0,0};

 int typeIII[2][7] = {2,3,12,13,22,23,24,
 8,9,18,19,27,28,29};
 int typeIII_n[2] = {0,0};

 //s1 and s10 left out
 int typeIV[2][14] = {6,7,8,9,16,17,18,19,20,26,27,28,29,30,
 ,2,3,4,5,11,12,13,14,15,21,22,23,24,25};
 int typeIV_n[2] = {0,0};

 // Loop over each PMT
 for (int iside=0; iside<=1; iside++) {

 //Loop over the events
 for (int ievent=0; ievent<nevent; ievent++) {

 //Exclude hot events
 if (hot[ievent] != 1) {

 //Get entries for each event
 tv__tree->GetEntry(ievent);

 //Did the cosmic ray go through s5,s15,s25 or s6,s16,s26
 int ray = 0;
 float xfill = 0.0;
 for (int itrig=0; itrig<3; itrig++) {
 int scint = trig[iside][itrig];
 float entry = float(l_s[scint]->GetValue());
 float cond = float(thresholds[scint]);
 if (entry > cond) {
 ray++;
 xfill = xfill + (entry / SPE_mean[scint]);
 }
 }

 //Fill the histograms if the cosmic ray was above threshold
 if (ray == 3) {
 trig_n[iside] = trig_n[iside] + 1;
 xfill = xfill / 3.0;

 // Type I
 for (int i1=0; i1<4; i1++) {
 scint = typeI[iside][i1];
 entry = float(l_s[scint]->GetValue());
 cond = float(thresholds[scint]);
 if (entry > cond) {
 typeI_n[iside] = typeI_n[iside] + 1;
 float yfill = entry / SPE_mean[scint];

- 33 -

 hist_array[iside].Fill(xfill,yfill);
 }
 }

 // Type II/III
 for (int i3=0; i3<7; i3++) {
 scint = typeIII[iside][i3];
 entry = float(l_s[scint]->GetValue());
 cond = float(thresholds[scint]);
 if (entry > cond) {
 typeIII_n[iside] = typeIII_n[iside] + 1;
 }
 }

 // Type IV
 for (int i4=0; i4<14; i4++) {
 scint = typeIV[iside][i4];
 entry = float(l_s[scint]->GetValue());
 cond = float(thresholds[scint]);
 if (entry > cond) {
 typeIV_n[iside] = typeIV_n[iside] + 1;
 }
 }
 }
 }
 }
 }

 // Print results
 for (int iside=0; iside<=1; iside++){

 float trig_percent = float(trig_n[iside]) / float(nevent);
 cout<<trig_percent<<" percent of events for PMT "<<iside<<" with all three trigger scint
above threshold"<<endl;
 cout<<trig_n[iside]<<" number of such events"<<endl<<endl;

 float typeI_prob = float(typeI_n[iside]) / (4.0 * trig_n[iside]);
 cout<<typeI_prob<<" TypeI leakage exp prob for PMT "<<iside<<endl;
 cout<<typeI_n[iside]<<" number of such events (4 possible scint per 'event')"<<endl<<endl;

 float typeIII_prob = float(typeIII_n[iside]) / (7.0 * trig_n[iside]);
 cout<<typeIII_prob<<" TypeII/III leakage exp prob for PMT "<<iside<<endl;
 cout<<typeIII_n[iside]<<" number of such events (7 possible scint per
'event')"<<endl<<endl;

 float typeIV_prob = float(typeIV_n[iside]) / (14.0 * trig_n[iside]);
 cout<<typeIV_prob<<" TypeIV leakage exp prob for PMT "<<iside<<endl;
 cout<<typeIV_n[iside]<<" number of such events (14 possible scint per
'event')"<<endl<<endl;

 cout<<endl;
 }

 //Print histograms
 TCanvas *c_1 = new TCanvas("c_1",infile.c_str(),0,0,800,400);
 c_1->Divide(2);
 for (int ipad=1; ipad<=2; ipad++) {
 c_1->cd(ipad);
 hist_array[ipad-1]->Draw("BOX");
 }

 c_1.Print("Leakage_LR.gif");
 }
}

- 34 -

5.3.2 Leakage and Efficiency

Efficiency_a.C

#include <iostream>
#include <iomanip>

int Efficiency_a()
{

 //Backup to file
 streambuf *output_buf;
 ofstream output_stream;
 output_stream.open("Efficiency_a.txt");
 output_buf = output_stream.rdbuf();
 cout.rdbuf(output_buf);

 //Input:
 // get 'thresholds[]' and 'SPE_mean[]/sigma[]' from 'SPE_P3.C'

 //Program:
 // loops over P1 through P7 calculating single channel efficiency of scintillators 12-19
 // the effect of overlap is taken into consideration with an 'or' statement

 gROOT->ForceStyle();
 gROOT->SetStyle("Plain");

 //Determined by inspection of the minimum for P3
 float thresholds[32] = {0.0, 0.0, 70.0, 70.0, 70.0, 70.0, 90.0, 90.0, 100.0, 100.0, 100.0,
 80.0, 90.0, 80.0, 80.0, 90.0, 80.0, 70.0, 80.0, 80.0, 50.0,
 40.0, 40.0, 60.0, 60.0, 30.0, 80.0, 40.0, 50.0, 90.0, 80.0, 0.0};

 //SPE data from SPE_P3.C
 float SPE_mean[32] = {0.0, 535.54, 164.95, 164.60, 156.23, 158.08, 242.23, 173.04, 220.08, 227.65, 189.09,
 150.40, 178.75, 146.53, 166.79, 165.97, 194.37, 145.65, 208.20, 176.26, 129.30,
 125.46, 116.04, 137.64, 164.51, 83.40, 159.28, 113.11, 132.74, 185.54, 178.19, 0.0};

 float SPE_sigma[32] = {0.0, 147.01, 64.25, 53.30, 56.86, 66.92, 100.89, 60.87, 76.10, 84.19, 85.30,
 58.49, 66.30, 49.03, 59.69, 57.57, 77.03, 57.17, 102.89, 94.51, 60.08,
 53.61, 51.55, 51.64, 61.61, 45.14, 61.86, 61.10, 56.97, 86.76, 83.53, 0.0};

 gStyle->SetPalette(1);

 //Allocate array indicating whether or not an event is 'hot' outside the loop as a pointer
 int* hot = NULL;

 //Loop over P1.root through P7.root
 for (int ifile=3; ifile<=3; ifile++){

 string infile = Form("P%d.root",ifile);
 TFile *_file0 = TFile::Open(infile.c_str());

 cout<<endl<<endl<<"For "<<infile<<":"<<endl;

 //Get the tree
 tv__tree = (TTree *) gROOT->FindObject("ntuple");

 //Get the leaves
 TLeaf *l_s[32];
 l_s[0] = tv__tree->FindLeaf("bottomtrig");
 l_s[31] = tv__tree->FindLeaf("toptrig");
 for (int ileaf = 1; ileaf <= 30; ileaf++) {
 string s_leaf =Form("s%d",ileaf);
 l_s[ileaf] = tv__tree->FindLeaf(s_leaf.c_str());
 }

 // 'nevent' is the number of events
 Int_t nevent = int(tv__tree->GetEntries());

- 35 -

//**
 // 'hot[event#]==1' iff the event is hot (i.e. greater than than 50percent of scint. above
threshold)
 // requires some squirrely programming due to inability to redim an array in C++
 delete [] hot;
 hot = NULL;
 hot = new int[nevent];
 for (int ihot=0; ihot<nevent; ihot++) {
 hot[ihot] = 0;
 }
 int lit=0;
 int hot_total=0;

 for (int iloop = 0; iloop < nevent; iloop++) {
 tv__tree->GetEntry(iloop);

 lit = 0;
 for (int ileaf=1; ileaf<=30; ileaf++) {
 if (l_s[ileaf]->GetValue() > thresholds[ileaf]) {
 lit++;
 }
 }

 if (lit>15) {
 hot_total++;
 hot[iloop]=1;
 }
 }

 float percent_hot = ((float) hot_total) / ((float) nevent);
 cout<<"Hot Events / Total Events = "<<hot_total<<" / "<<nevent<<" = "<<percent_hot<<endl;
 cout<<"Events considered (not 'hot') = "<<(nevent - hot_total)<<endl<<endl;

//**

 int stepsx = 12;
 //int stepsy = 12;
 float za[12] = {.5 ,.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25};
 //float a[12] = {};
 //float zb[12] = {-.75, -.5, -.25, 0.0, .25, .5, .75, 1.0, 1.25, 1.5, 1.75, 2.0};
 //float zb[2] = {-0.842, -0.524, -0.253, 0.0, 0.253, 0.524, 0.842, 1.282};
 float a[12][31];
 // float b[12][31];

 //Set thresholds_a
 for (int ihist=1; ihist<=30; ihist++) {
 for (int i=0; i<stepsx; i++){
 a[i][ihist] = za[i]*SPE_mean[ihist];
 //a[i][ihist] = SPE_sigma[ihist]*za[i]+SPE_mean[ihist];
 //b[i][ihist] = SPE_sigma[ihist]*zb[i]+SPE_mean[ihist];
 }
 }

 //Efficiency
 int trig1[8][12]; //N
 int trig2[8][12]; //k
 float err1[8][12]; //Poisson
 float err2[8][12]; //Binomial
 float eff[8][12];

 for(int i=0; i<8; i++) {
 for(int j=0;j<12;j++) {
 trig1[i][j] = 0;
 trig2[i][j] = 0;
 err1[i][j] = 0.0;
 err2[i][j] = 0.0;
 eff[i][j] = 0.0;

- 36 -

 }
 }

 for (int iloop=0;iloop<nevent;iloop++){
 tv__tree->GetEntry(iloop);

 for (int imid = 12; imid<=19; imid++) {

 //Exclude the hot events
 if (hot[iloop] != 1){

 //Loop over all changes in thresholds
 for (int ia=0; ia<12; ia++) {

 //Are scintillators in column (top and bottom row) above the new and improved
threshold_a?
 if ((l_s[imid-10]->GetValue() > a[ia][imid]) && (l_s[imid+10]->GetValue() >
a[ia][imid])){

 trig1[imid-12][ia]++;

 //Are scintillators in column (middle row) above the old threshold?
 if ((l_s[imid-1]->GetValue() > thresholds[imid-1]) || (l_s[imid]->GetValue() >
thresholds[imid]) || (l_s[imid+1]->GetValue() > thresholds[imid+1])){

 trig2[imid-12][ia]++;
 }
 }
 }
 }
 }
 }

 for(int i=0; i<8; i++) {
 for(int j=0;j<12;j++) {
 float k = float(trig2[i][j]);
 float N = float(trig1[i][j]);
 eff[i][j] = k/N;
 err1[i][j] = k/N * sqrt(1/k + 1/N);
 err2[i][j] = 1/N * sqrt(k*(1 - k/N));
 }
 }

 for (int j=0; j<12; j++) {
 for (int i=0; i<8; i++) {
 cout<<setw(7)<<setiosflags(ios::fixed)<<setprecision(4)<<eff[i][j];
 }
 cout<<endl;
 for (int i=0; i<8; i++) {
 cout<<setw(7)<<trig1[i][j];
 }
 cout<<endl;
 for (int i=0; i<8; i++) {
 cout<<setw(7)<<setiosflags(ios::fixed)<<setprecision(4)<<err1[i][j];
 }
 cout<<endl;
 for (int i=0; i<8; i++) {
 cout<<setw(7)<<setiosflags(ios::fixed)<<setprecision(4)<<err2[i][j];
 }
 cout<<endl<<endl;
 }

 }
 return 0;
}

- 37 -

Efficiency_ab.C

#include <iostream>
#include <iomanip>

int Efficiency_ab()
{

 //Backup to file
 streambuf *output_buf;
 ofstream output_stream;
 output_stream.open("Efficiency_ab.txt");
 output_buf = output_stream.rdbuf();
 cout.rdbuf(output_buf);

 //Input:
 // get 'thresholds[]' and 'SPE_mean[]/sigma[]' from 'SPE_P3.C'

 //Program:
 // loops over P1 through P7 calculating single channel efficiency of scintillators 12-19
 // the effect of overlap is taken into consideration with an 'or' statement

 gROOT->ForceStyle();
 gROOT->SetStyle("Plain");

 //Determined by inspection of the minimum for P3
 float thresholds[32] = {0.0, 0.0, 70.0, 70.0, 70.0, 70.0, 90.0, 90.0, 100.0, 100.0, 100.0,
 80.0, 90.0, 80.0, 80.0, 90.0, 80.0, 70.0, 80.0, 80.0, 50.0,
 40.0, 40.0, 60.0, 60.0, 30.0, 80.0, 40.0, 50.0, 90.0, 80.0, 0.0};

 //SPE data from SPE_P3.C
 float SPE_mean[32] = {0.0, 535.54, 164.95, 164.60, 156.23, 158.08, 242.23, 173.04, 220.08, 227.65, 189.09,
 150.40, 178.75, 146.53, 166.79, 165.97, 194.37, 145.65, 208.20, 176.26, 129.30,
 125.46, 116.04, 137.64, 164.51, 83.40, 159.28, 113.11, 132.74, 185.54, 178.19, 0.0};

 float SPE_sigma[32] = {0.0, 147.01, 64.25, 53.30, 56.86, 66.92, 100.89, 60.87, 76.10, 84.19, 85.30,
 58.49, 66.30, 49.03, 59.69, 57.57, 77.03, 57.17, 102.89, 94.51, 60.08,
 53.61, 51.55, 51.64, 61.61, 45.14, 61.86, 61.10, 56.97, 86.76, 83.53, 0.0};

 gStyle->SetPalette(1);

 //Allocate array indicating whether or not an event is 'hot' outside the loop as a pointer
 int* hot = NULL;

 //Loop over P1.root through P7.root
 for (int ifile=3; ifile<=3; ifile++){

 string infile = Form("P%d.root",ifile);
 TFile *_file0 = TFile::Open(infile.c_str());

 cout<<endl<<endl<<"For "<<infile<<":"<<endl;

 //Get the tree
 tv__tree = (TTree *) gROOT->FindObject("ntuple");

 //Get the leaves
 TLeaf *l_s[32];
 l_s[0] = tv__tree->FindLeaf("bottomtrig");
 l_s[31] = tv__tree->FindLeaf("toptrig");
 for (int ileaf = 1; ileaf <= 30; ileaf++) {
 string s_leaf =Form("s%d",ileaf);
 l_s[ileaf] = tv__tree->FindLeaf(s_leaf.c_str());
 }

 // 'nevent' is the number of events
 Int_t nevent = int(tv__tree->GetEntries());

//**

- 38 -

 // 'hot[event#]==1' iff the event is hot (i.e. greater than than 50percent of scint. above
threshold)
 // requires some squirrely programming due to inability to redim an array in C++
 delete [] hot;
 hot = NULL;
 hot = new int[nevent];
 for (int ihot=0; ihot<nevent; ihot++) {
 hot[ihot] = 0;
 }
 int lit=0;
 int hot_total=0;

 for (int iloop = 0; iloop < nevent; iloop++) {
 tv__tree->GetEntry(iloop);

 lit = 0;
 for (int ileaf=1; ileaf<=30; ileaf++) {
 if (l_s[ileaf]->GetValue() > thresholds[ileaf]) {
 lit++;
 }
 }

 if (lit>15) {
 hot_total++;
 hot[iloop]=1;
 }
 }

 float percent_hot = ((float) hot_total) / ((float) nevent);
 cout<<"Hot Events / Total Events = "<<hot_total<<" / "<<nevent<<" = "<<percent_hot<<endl;
 cout<<"Events considered (not 'hot') = "<<(nevent - hot_total)<<endl<<endl;

//**

 int stepsx = 8;
 int stepsy = 8;
 //float za[12] = {-.5 ,0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0};
 //float zb[12] = {-.75, -.5, -.25, 0.0, .25, .5, .75, 1.0, 1.25, 1.5, 1.75, 2.0};
 float za[8] = {-0.842, -0.524, -0.253, 0.0, 0.253, 0.524, 0.842, 1.282};
 float zb[8] = {-0.842, -0.524, -0.253, 0.0, 0.253, 0.524, 0.842, 1.282};
 float a[12][31];
 float b[12][31];

 //Set thresholds_a
 for (int ihist=1; ihist<=30; ihist++) {
 for (int i=0; i<stepsx; i++){
 a[i][ihist] = SPE_sigma[ihist]*za[i]+SPE_mean[ihist];
 //b[i][ihist] = SPE_sigma[ihist]*zb[i]+SPE_mean[ihist];
 }
 }

 //Set thresholds_b
 for (int ihist=1; ihist<=30; ihist++) {
 for (int i=0; i<stepsy; i++){
 //a[i][ihist] = SPE_sigma[ihist]*za[i]+SPE_mean[ihist];
 b[i][ihist] = SPE_sigma[ihist]*zb[i]+SPE_mean[ihist];
 }
 }

 //Efficiency
 int trig1[8][8];
 int trig2[8][8];

 for (int imid = 12; imid<=19; imid++) {

 //Ensure trig counters initialized to zero
 for (int iclearx=0; iclearx<stepsx; iclearx++){

- 39 -

 for (int icleary=0; icleary<stepsy; icleary++){
 trig1[iclearx][icleary] = 0;
 trig2[iclearx][icleary] = 0;
 }
 }

 for (int iloop=0;iloop<nevent;iloop++){
 tv__tree->GetEntry(iloop);

 //Exclude the hot events
 if (hot[iloop] != 1){

 //Loop over all changes in thresholds
 for (int ia=0; ia<stepsx; ia++) {
 for (int ib=0; ib<stepsy; ib++){

 //Are scintillators in column (top and bottom row) above the new and improved
threshold_a?
 if ((l_s[imid-10]->GetValue() > a[ia][imid-10]) && (l_s[imid+10]->GetValue() >
a[ia][imid+10])){

 trig1[ia][ib] = trig1[ia][ib] + 1;

 //Are scintillators in column (middle row) above the old threshold?
 if ((l_s[imid-1]->GetValue() > b[ib][imid-1]) || (l_s[imid]->GetValue() >
b[ib][imid]) || (l_s[imid+1]->GetValue() > b[ib][imid+1])){

 trig2[ia][ib] = trig2[ia][ib]+1;
 }
 }
 }
 }
 }
 }

 cout<<"FOR s"<<imid<<":"<<endl;

 //Print Denominator (Number of events satisfying first trigger)
 for (int ix=0; ix<stepsx; ix++){
 for (int iy=0; iy<stepsy; iy++) {
 cout<<setw(7)<<setiosflags(ios::right)<<trig1[ix][iy];
 }
 cout<<endl;
 }
 cout<<endl;

 //Print Efficiency
 for (int ix=0; ix<stepsx; ix++){
 for (int iy=0; iy<stepsy; iy++) {

 //Print efficiency provided trig1 is not zero
 if (trig1[ix][iy] != 0) {
 float eff = ((float) trig2[ix][iy]) / ((float) trig1[ix][iy]);

cout<<setw(7)<<setiosflags(ios::fixed)<<setiosflags(ios::right)<<setprecision(4)<<eff;
 cout<<",";
 }
 if (trig1[ix][iy] == 0) {
 cout<<setw(7)<<"ERR";
 }
 }
 cout<<endl;
 }
 cout<<endl<<endl;
 }
 }
 return 0;
}

- 40 -

Surface.C

#include <iostream>
#include <iomanip>

int Surface()
{
 //Input:
 //

 //Program:
 //
 //Output:
 // plots of 2D histograms with linear fit

 //Backup to file
 streambuf *output_buf;
 ofstream output_stream;
 output_stream.open("Surface.txt");
 output_buf = output_stream.rdbuf();
 cout.rdbuf(output_buf);

 gROOT->ForceStyle();
 gROOT->SetStyle("Plain");
 gStyle->SetOptFit(1100);
 gStyle->SetPalette(1);

 float matrix12[12][12]={0.9631, 0.9523, 0.9433, 0.9283, 0.9127, 0.8981, 0.8786, 0.8553, 0.8077,
0.7325, 0.6546, 0.5750,
 0.9635, 0.9527, 0.9434, 0.9284, 0.9133, 0.8990, 0.8797, 0.8560, 0.8084, 0.7324, 0.6533, 0.5749,
 0.9642, 0.9532, 0.9440, 0.9289, 0.9141, 0.8994, 0.8795, 0.8551, 0.8076, 0.7335, 0.6535, 0.5739,
 0.9642, 0.9540, 0.9448, 0.9296, 0.9156, 0.9015, 0.8813, 0.8570, 0.8113, 0.7372, 0.6569, 0.5759,
 0.9633, 0.9530, 0.9440, 0.9294, 0.9163, 0.9021, 0.8816, 0.8579, 0.8114, 0.7364, 0.6567, 0.5758,
 0.9639, 0.9545, 0.9451, 0.9304, 0.9172, 0.9029, 0.8824, 0.8578, 0.8111, 0.7354, 0.6575, 0.5789,
 0.9645, 0.9556, 0.9463, 0.9319, 0.9187, 0.9044, 0.8836, 0.8595, 0.8117, 0.7347, 0.6568, 0.5772,
 0.9663, 0.9582, 0.9483, 0.9344, 0.9204, 0.9056, 0.8845, 0.8589, 0.8103, 0.7357, 0.6602, 0.5811,
 0.9699, 0.9613, 0.9513, 0.9377, 0.9262, 0.9106, 0.8905, 0.8649, 0.8167, 0.7413, 0.6655, 0.5866,
 0.9687, 0.9588, 0.9496, 0.9348, 0.9244, 0.9103, 0.8918, 0.8679, 0.8187, 0.7462, 0.6742, 0.5993,
 0.9708, 0.9601, 0.9508, 0.9363, 0.9270, 0.9117, 0.8963, 0.8725, 0.8257, 0.7565, 0.6866, 0.6068,
 0.9724, 0.9625, 0.9546, 0.9389, 0.9300, 0.9181, 0.9053, 0.8836, 0.8422, 0.7761, 0.7101, 0.6430};

 // MUST INCLUDE "float matrix13[13][13] = {};" and values from Efficiency_ab.C

 //Book histogram
 TH2F *hist_array = new TH2F("Eff_hist","Leakage and Single Layer Efficiency",8,-(1.0-0.15),-
(1.0-0.95),5,0.15,0.65);

 for (int ihist=0; ihist<8; ihist++) {

 //THIS IS REALLY UGLY
 float matrix_temp[8][8];
 if (ihist == 0) {
 for (int ix=0; ix<8; ix++){
 for (int iy=0; iy<8; iy++){
 matrix_temp[ix][iy] = matrix12[ix][iy];
 }
 }
 }

 // MUST INCLUDE A 'matrix_temp[8][8] = matrix1X[12][12]" for each middle scintillator'

 //And Finally...
 float matrix[8][5];
 for (int ix=0; ix<8; ix++){
 for (int iy=0; iy<5; iy++){

 matrix[ix][iy] = matrix_temp[ix][iy];

- 41 -

 float xvar = -(1.0 - (float(0.1*ix) + 0.2));
 float yvar = float(0.1*iy) + 0.2;
 float zvar = matrix[ix][iy] / 8.0;

 hist_array->Fill(xvar,yvar,zvar);
 }
 }
 }

 /*
 //Book Graphs
 TGraph2D *graph_array[8];
 for (int igraph=0; igraph<8; igraph++) {
 graph_array[igraph] = new TGraph2D(64);
 }
 */

 TF2 *func_array = new TF2("ffit","[0]+[1]*x+[2]*y",-1.0,0.0,0.0,1.0);
 func_array->SetParameters(.988,0.0135,-.104);
 hist_array->Fit(ffit,"0");

// MUST INCLUDE AN ARRAY OF FUNCTIONS IF MULTIPLE FITS DESIRED

 for (int ifunc=0; ifunc<=0; ifunc++) {
 float parameter[3];
 float error[3];
 for (int ipar=0; ipar<3; ipar++) {
 parameter[ipar] = func_array->GetParameter(ipar);
 error[ipar] = func_array->GetParError(ipar);
 }
 cout<<"Parameters drawn from averaged efficiencies"<<endl;
 cout<<parameter[0]<<" w/ error "<<error[0]<<" is the constant"<<endl;
 cout<<parameter[1]<<" w/ error "<<error[1]<<" is the change in efficiency per fraction SPE of
the trigger scintillators"<<endl;
 cout<<parameter[2]<<" w/ error "<<error[2]<<" is the change in efficiency per fraction SPE of
the middle scintillators"<<endl<<endl;
 }

 ////Print histograms
 TCanvas *c_1 = new TCanvas("c_1","Efficiencies",0,0,500,500);

 // c_1->Divide(4,2,0.04,0.04);
 for (int ipad=1; ipad<=1; ipad++) {
 c_1->cd(ipad);
 func_array->Draw("SURF4");
 hist_array->Draw("SURF2 same");
 func_array->GetXaxis()->SetTitle("Thresh 'a' (Frac_SPE)");
 func_array->GetXaxis()->SetLabelSize(.03);
 func_array->GetXaxis()->SetTitleOffset(1.6);
 func_array->GetXaxis()->SetNdivisions(505);
 func_array->GetYaxis()->SetNdivisions(505);
 func_array->GetYaxis()->SetTitle("Thresh 'b' (Frac_SPE)");
 func_array->GetYaxis()->SetLabelSize(.03);
 func_array->GetYaxis()->SetTitleOffset(1.6);
 //hist_array[ipad-1]->GetZaxis()->SetTitle("Efficiency");
 func_array->GetZaxis()->SetLabelSize(.03);
 func_array->GetZaxis()->SetTitleOffset(1.6);

 //func_array->Draw("SURF1 same");
 }

 //c_1.Print("graphs.gif");

 return 0;
}

